

NFRC U-FACTOR, SHGC, VT, & CONDENSATION RESISTANCE COMPUTER SIMULATION REPORT

Rendered to: TUBELITE, INC.

SERIES/MODEL: T14000 I/O Series Inside Set / Outboard Plane

> Report Number: B6918.03-116-45 Report Date: 9/25/2015

NFRC U-FACTOR, SHGC, VT, & CONDENSATION RESISTANCE COMPUTER SIMULATION REPORT

Rendered to: TUBELITE, INC. 4878 Mackinaw Trail Reed City, Michigan 49677

Report Number: B6918.03-116-45 Simulation Date: 9/25/2015 Report Date: 9/25/2015

Project Summary:

Architectural Testing, Inc., an Intertek Company (Intertek-ATI) was contracted to perform U-Factor, Solar Heat Gain Coefficient, Visible Transmittance, and Condensation Resistance* computer simulations in accordance with the National Fenestration Rating Council (NFRC). The products were evaluated in full compliance with NFRC requirements to the standards listed *NFRC's Condensation Resistance rating is NOT equivalent to a Condensation Resistance Factor (CRF) determined in accordance with AAMA 1503.

Standards:

ANSI/NFRC 100-2014: Procedure for Determining Fenestration Product U-Factors

ANSI/NFRC 200-2014: Procedure for Determining Fenestration Product Solar Heat

Gain Coefficient and Visible Transmittance at Normal Incidence

NFRC 500-2014: Procedure for Determining Fenestration Product Condensation

Resistance Values

Software:

Frame and Edge Modeling: THERM 6.3.46 Center-of-Glass Modeling: WINDOW 6.3.74 Total Product Calculations: WINDOW 6.3.74

Spectral Data Library: IGDB 41.0

Simulations Specimen Description:

Series/Model: T14000 I/O Series Inside Set / Outboard Plane

Type: Glazed Wall System, Window Wall

Frame Material: AT Aluminum w/ Thermal Breaks - All Members

Sash Material: NA Not Applicable **Standard Size:** 2000mm x 2000mm

Modeling Assumptions/Technical Interpretations:

- 1) To prevent air infiltration, tape was applied to all interior sash crack locations.
- 2) This product is available in either a painted or anodized finish. These two finish types can be grouped in accordance with ANSI/NFRC 100-2014, Section 4.2.1.L. The painted finish was simulated since it is the worst case (highest emissivity). The test sample was painted aluminum.
- 3) The center-line modeling approach was conducted using the horizontal intermediate for the head and sill models, and the vertical intermediate for the jambs. This procedure is outlined in the NFRC Simulation Manual, Section 8.9.

Specialty Products Table:

The specialty products method allow the manufacturer to determine the overall product SHGC and VT for any glazing option. The center of glass SHGC and/or VT must be determined using WINDOW 6.3.74. The method gives overall product SHGC and VT indexed on center of glass properties. All values used in the calculations are truncated to six decimal place precision.

	No Dividers	Dividers < 1	Dividers > 1
SHGC0	0.005904	0.009330	0.012542
SHGC1	0.898999	0.797673	0.702666
VT0	0.000000	0.000000	0.000000
VT1	0.893095	0.788343	0.690124

SHGC = SHGC0 + SHGCc (SHGC1 - SHGC0) VT = VT0 + VTc (VT1 - VT0)

Validation Matrix:

The following products are part of a validation matrix. Only one is required for validation testing.

Product Line	Report Number
None	-

Spacer Option Description

	Sealant		
Spacer Type	Primary	Secondary	Code
Quanex S2 Premium Super Spacer	Butyl Rubber		ZF-S

Gas Filling Technique Description

Gas Filling Technique Description							
Fill Type	Method						
84.48% Xenon	Single Probe Timed						
76.14% Argon	Single Probe Timed						
88.47% Argon	Single Probe Timed						
78.55% Argon	Single Probe Timed						
78.10% Krypton	Single Probe Timed						
96.76% Argon	Single Probe Timed						
64.98% Argon	Single Probe Timed						
74.70% Argon	Single Probe Timed						
60.78% Argon	Single Probe Timed						
62.43% Argon	Single Probe Timed						
86.02% Argon	Single Probe Timed						
81.60% Xenon	Single Probe Timed						
94.54% Xenon	Evacuated Chamber						
76.87% Krypton	Single Probe Timed						
71.53% Xenon	Single Probe Timed						
76.42% Krypton	Single Probe Timed						
66.65% Xenon	Single Probe Timed						
82.13% Xenon	Single Probe Timed						

Edge-of-Glass Construction

Iı	nterior Condition	EPDM Gasket Between Aluminum Frame and Glass
E	Exterior Condition	EPDM Gasket Between Aluminum Frame and Glass

Weatherstripping

Туре	Quantity	Location
None	-	-

Frame/Sash Materials Finish

Interior	Painted Aluminum
Exterior	Painted Aluminum

NFRC 100/200/500 Summary Sheet T14000 I/O Series Inside Set / Outboard Plane

	т т		ı		1	T DUIT		uc Sci / C			1		
a	Pane Thickness 1	Gap Width 1	Pane Thickness 2	Sap Width 2	Pane Thickness 3	Gap Width 3	Pane Thickness 4	t (Sap Fill	Tow-e (Surface#)	nittance (V	Tint (Tr)	Spacer	
					Gr	ids (None	/ <1 / >=1)	Grids (None	/<1/>=1)		Resist	tance
1	COG=(0.4400											
	0.222	0.500	0.225					XEN84			CL	ZF-S	N
	U-Factor	r	0.50	SHGC	(N)			0.62	VT (N)	0.66		CR	48
2	COG=(0.4200							-				
	0.236	0.500	0.225					ARG76	0.654(#	2)	RC	ZF-S	N
	U-Factor	r	0.48	SHGC	(N)	•		0.31	VT (N)	0.29		CR	48
3	COG=(0.4000											
	0.223	0.500	0.225					ARG88	0.571(#	2)	CL	ZF-S	N
	U-Factor	r	0.47	SHGC	(N)			0.22	VT (N)	0.15		CR	49
4	COG=(0.3800											
	0.236	0.500	0.225					ARG79	0.465(#	2)	RC	ZF-S	N
	U-Factor	r	0.45	SHGC	(N)			0.19	VT (N)	0.13		CR	50
5	COG=(0.3600											
	0.221	0.500	0.225					KRY78	0.406(#	2)	SR	ZF-S	N
	U-Factor	r	0.43	SHGC	(N)			0.19	VT (N)	0.16		CR	52
6	COG=(0.3400											
	0.230	0.500	0.225					ARG97	0.331(#	2)	CL	ZF-S	N
	U-Facto	r	0.42	SHGC	(N)			0.16	VT (N)	0.11		CR	53
7	COG=	0.3200				_							
	0.223	0.500	0.225					ARG65	0.215(#	2)	CL	ZF-S	N
	U-Facto	r	0.40	SHGC	(N)			0.56	VT (N)	0.66		CR	53
8	COG=(•							
	0.233	0.500	0.225					ARG75	0.166(#	2)	CL	ZF-S	N
	U-Facto		0.38	SHGC	(N)			0.40	VT (N)	0.48		CR	54
9	COG=(T			_			1				
	0.223	0.500	0.225					ARG61	0.087(#	2)	CL	ZF-S	N
<u> </u>	U-Factor		0.37	SHGC	(N)			0.49	VT (N)	0.68		CR	54
10	COG=(1	ı	1	ī			1			1	
	0.223	0.500	0.225		<u> </u>	<u> </u>		ARG62	0.035(#	2)	CL	ZF-S	N
1	U-Factor	r	0.35	SHGC	(N)			0.35	VT (N)	0.63		CR	54

NFRC 100/200/500 Summary Sheet T14000 I/O Series Inside Set / Outboard Plane

	1		2		3		4		(#			
	Pane Thickness	idth 1	Pane Thickness	idth 2	Pane Thickness	idth 3	Pane Thickness 4	_	.ow-e (Surface#)			ype
	ne Ti	Gap Width	ne TI	Gap Width	ne TI	Gap Width	ne Ti	Gap Fill	w-e (=	Spacer	Grid Type
	Pa	Ga	Pa			_		_		Tint	Sp	Gr
	U	-Facto	r	Solar				nt (SHGC)	Visible Transmitt	, ,		nsation tance
11	COG=	0.2400			Gri	ids (None	/ <1 / >=1)	Grids (None / <1	/ >=1)	KCSIS	tance
''								ADC06	0.025(#2) / 0.025	(42)	7E 0	N.T.
	0.223		0.223	GWGG /	3. D			ARG86	0.035(#2) / 0.035			N
12	U-Facto COG=		0.33	SHGC ((N)			0.33	VT (N)	0.56	CR	54
12	0.223		0.223					XEN82	0.018(#2) / 0.018	(#3) CI	ZF-S	N
	U-Facto		0.223	SHGC (N)			0.23	VT (N)	0.46	CR	55
13	COG=			SHGC ((1 N)			0.23	VI (IV)	0.40	CK	55
	0.223		0.223					XEN95	0.018(#2) / 0.018	(#3) CI	ZF-S	N
	U-Facto		0.30	SHGC (N)			0.23	VT (N)	0.46	CR	55
14	COG=				(11)			0.20	V 2 (11)	0.10	OR	
	0.223	0.250	0.003	0.250	0.221			KRY77/AIR	0.018(#2) / 0.76(#3) / 0.11(#4)	/ 0.028(#5) CI	ZF-S	N
	U-Facto		0.28	SHGC (0.22	VT (N)	0.39	CR	55
15	COG=	0.1600							. ,			
	0.223	0.250	0.003	0.250	0.223			XEN72/AIR	0.018(#2) / 0.76(#3) / 0.11(#4)	/ 0.018(#5) CI	ZF-S	N
	U-Facto	r	0.27	SHGC ((N)			0.22	VT (N)	0.41	CR	56
16	COG=	0.1400							-			
	0.223	0.250	0.003	0.250	0.223			KRY76	0.018(#2) / 0.76(#3) / 0.11(#4)	/ 0.018(#5) CI	ZF-S	N
	U-Facto	r	0.25	SHGC ((N)			0.21	VT (N)	0.41	CR	55
17	COG=	0.1200										
	0.223	0.250	0.003	0.250	0.223			XEN67	0.018(#2) / 0.76(#3) / 0.11(#4)	/ 0.018(#5) CI	ZF-S	N
	U-Facto	r	0.23	SHGC ((N)			0.21	VT (N)	0.41	CR	56
18	COG=	0.1000		ı								
	0.223	0.250	0.003	0.250	0.223			XEN82	0.018(#2) / 0.76(#3) / 0.11(#4)	/ 0.018(#5) CI	ZF-S	N
	U-Facto	r	0.22	SHGC ((N)			0.21	VT (N)	0.41	CR	56

The Condensation Resistance results obtained from this procedure are for controlled laboratory conditions and do not include the effects of air movement through the specimen, solar radiation, and the thermal bridging that may occur due to the specific design and construction of the fenestration system opening.

Ratings values included in this report are for submittals to an NFRC-licensed IA and are not meant to be used directly for labeling purposes. Only those values identified on a valid Certification Authorization Report (CAR) by an NFRC accredited Inspection Agency (IA) are to be used for labeling purposes. The ratings values were rounded in accordance to NFRC 601, NFRC Unit and Measurement Policy.

Intertek-ATI is an NFRC accredited simulation laboratory and all simulations were conducted in full compliance with NFRC approved procedures and specifications. The values included in this report are not considered in compliance with ANSI/NFRC 100, ANSI/NFRC 200, and/or NFRC 500 unless the associated validation test requirements have been satisfied, as applicable.

Intertek-ATI will service this report for the entire test record retention period. Test records that are retained such as detailed drawings, datasheets, representative samples of test specimens, or other pertinent project documentation will be retained by Intertek-ATI for the entire test record retention period. The test record retention end date for this report is August 21, 2019.

Results obtained are simulated values and were secured by using the designated test methods. This report does not constitute certification of this product nor an opinion or endorsement by this laboratory. It is the exclusive property of the client so named herein and relates only to the product simulated. This report may not be reproduced, except in full, without the written approval of Intertek-ATI

For INTERTEK-ATI:	
SIMULATED BY:	REVIEWED BY:
Allison M. Goodyear	Kristen L. Louder
Allison M. Goodyear Simulation Technician	Kristen L. Louder Senior Simulation Technician

AMG:amg

B6918.03-116-45

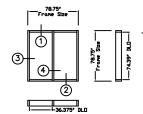
Attachments (pages): This report is complete only when all attachments listed are included.

Appendix A: Drawings and Bills of Material (9)

Revision Log

Rev.#	Date	Page(s)	Revision(s)
.03R0	9/25/2015	All	Original Report Issued to Tubelite, Inc

All drawings and Bills of Material used to simulate this product are enclosed in this Appendix

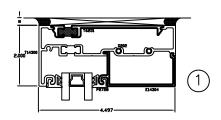


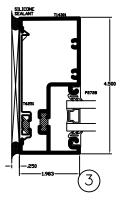
Report #:

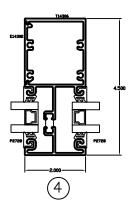
B6918-116-45 09/18/15

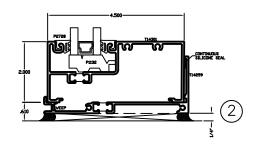
Date:

Architectural Testing Verified by: Oslison M. Hoodyson

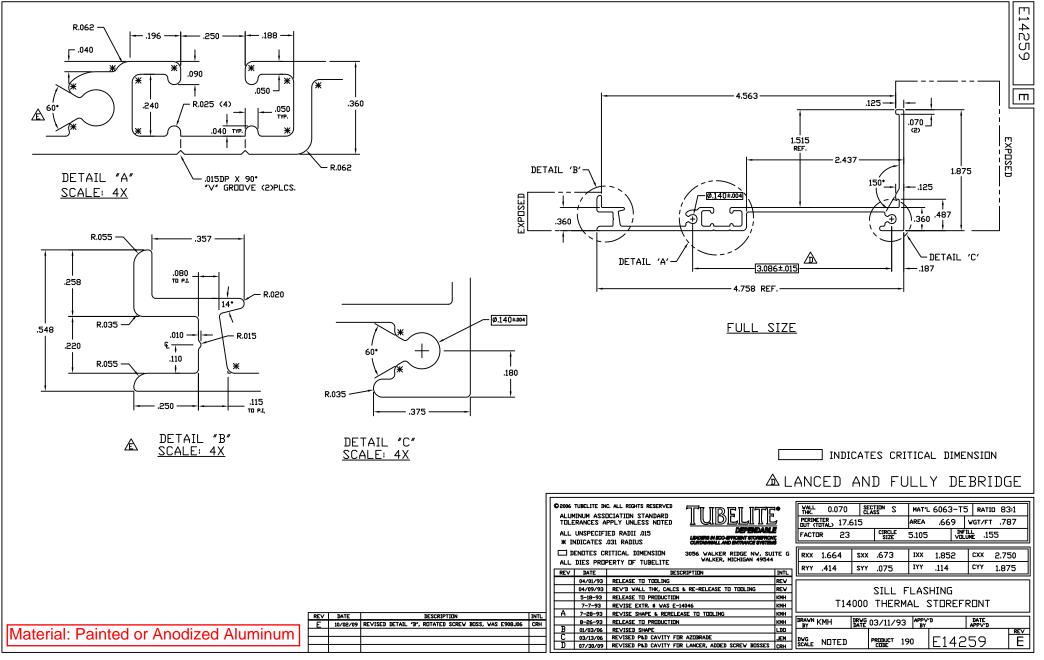


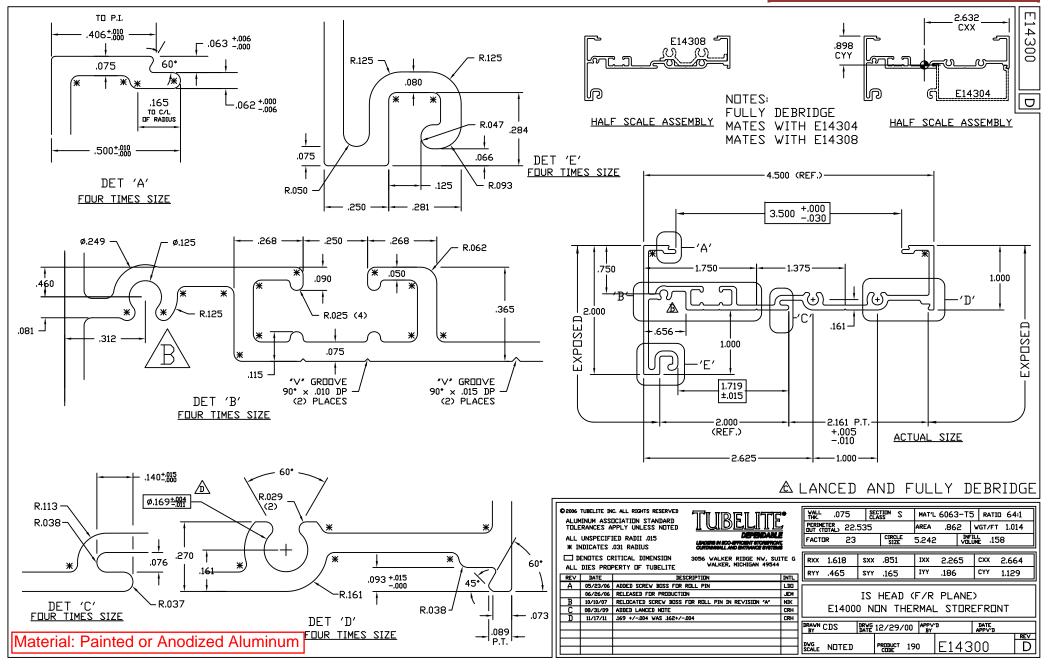

T-14000 I/O Inside Set / Outbard: Flush Glaze Series Thermal Mock Up #1 - AAMA 1503

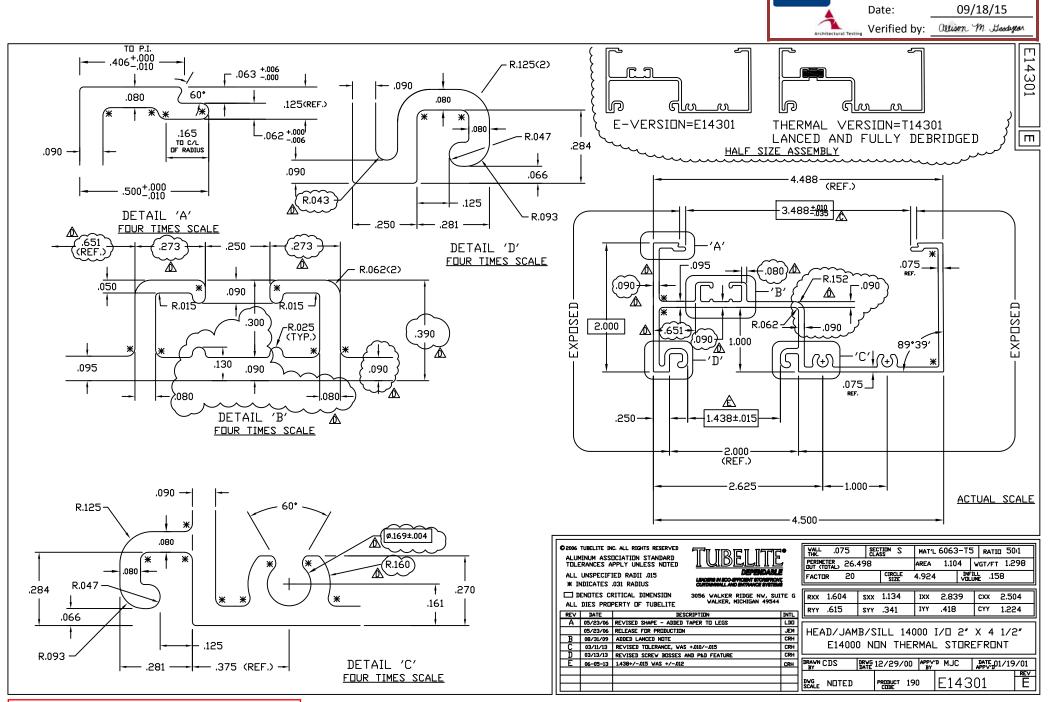

T-14000 I/O Inside Set/ Outboard Mock Up



Glass: 1" overall IG 1/4" PPG Solarban 70 XL with low-e on #2 1/2" gap - 90/10 Argon fill 1/4" Clear




06-2015



B6918-116-45

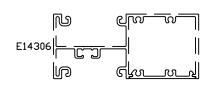
Report #:

Intertek

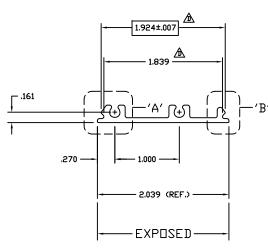
Report #:

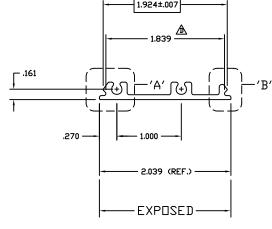
B6918-116-45 09/18/15

E14302

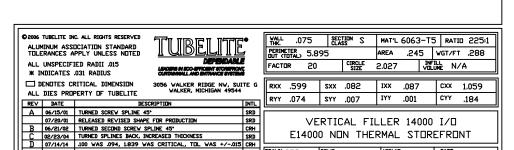

D

REV D


E14302


allison M. Goodylar

NOTES: MATES WITH E14306

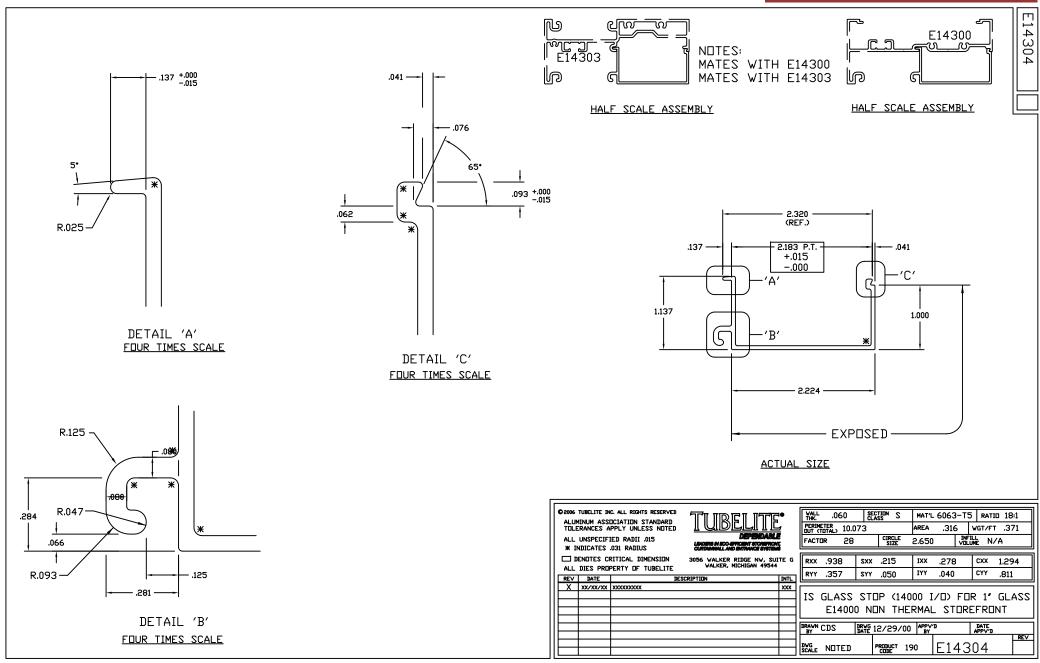


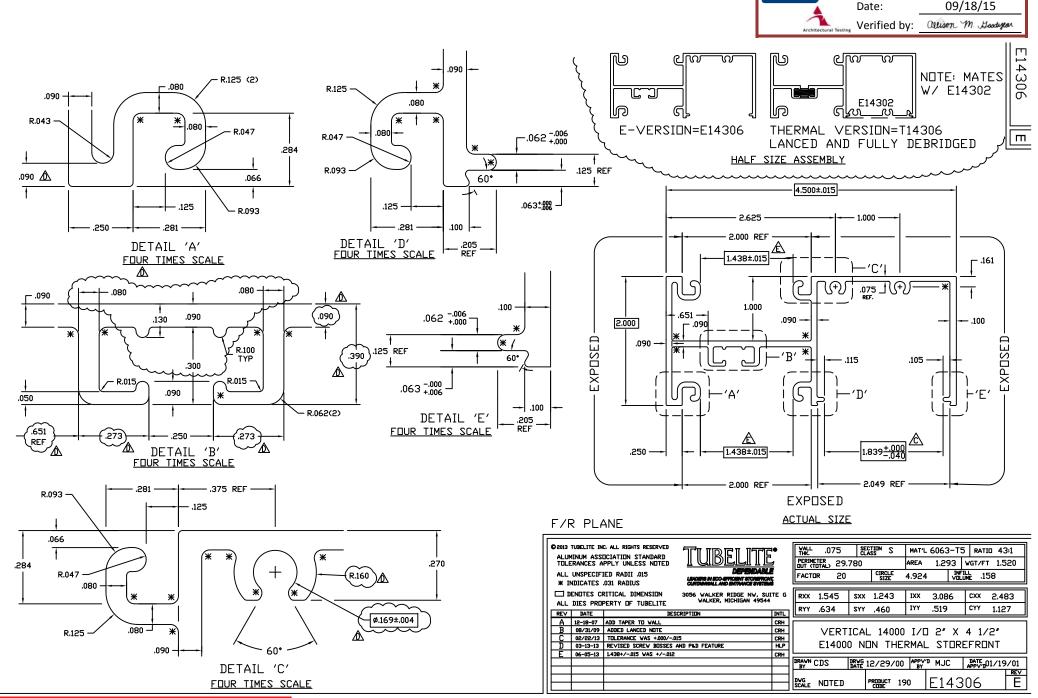
HALF SIZE ASSEMBLY

ACTUAL SIZE

DRAWN SRD

DWG NOTED

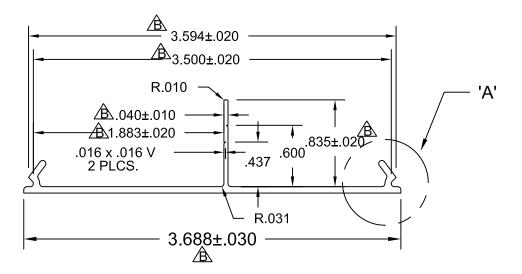

DRVG 12/18/03 APPV'D

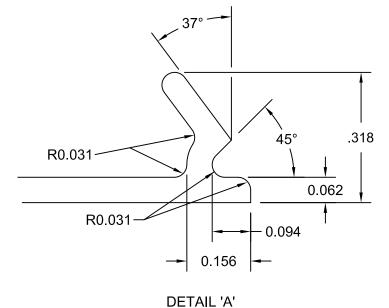

PRODUCT 190

.047 ø.162±.004 45* .270 .153 53* .062 .100 <u>Æ</u> DETAIL 'A' FOUR TIMES SCALE

Report #:

Intertek


B6918-116-45


Material: Painted or Anodized Aluminum

 \Box

4X SIZE

TYPICAL WALL THICKNESS = .062 10' LENGTHS B PURCHASED FROM AMESBURY - Q8924

Material: Rigid PVC

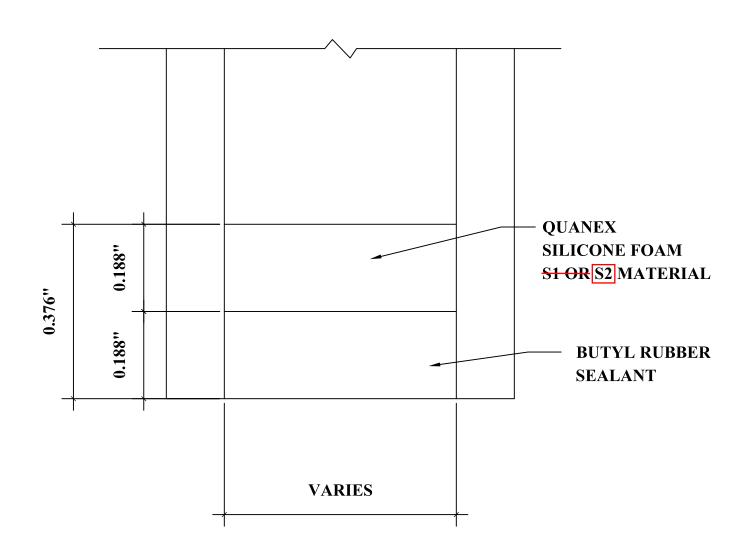
 $\ensuremath{\mathfrak{O}}$ 2006 TUBELITE INC. ALL RIGHTS RESERVED

ALL UNSPECIFIED RADII .015

* INDICATES .031 RADIUS

DENOTES CRITICAL DIMENSION

REV	DATE	DESCRIPTION	INTL
	05/29/02	RELEASE FOR PRODUCTION - ER060201	SRD
	03/18/08	ADDED CENTER LEG STOP	NIK
	03/18/08	RELEASE FOR TOOLING	NIK
В	09/09/13	Added tolerance for new supplier - Amesbury	⊐



3056 WALKER RIDGE NW, SUITE G WALKER, MICHIGAN 49544

FLAT LEG SNAP IN FILLER RIGID PVC PERIMETER CAULK BACKER

DRAWN SRD	DRWG 4/5/02	APPV,D BY	DATE APPV'D	
DRWG SCALE NOTED	PRODUCT 160	P4543A		B

DETAIL FOR THERMAL MODELING OF QUANEX SUPER SPACER PREMIUM (ZF-S)